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Mask Optimization

Lithography

I Use light to transfer patterns
from photomask to light
sensitive photoresist on wafer

I Mismatch between lithography
system and device feature sizes

Optical proximity correction (OPC)

I OPC compensates the printing
errors by modifying the masks

I Guided by lithography
simulation models OPC illustration (sources from F.

Schellenberg [4]).
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Inverse Lithography Technique (ILT)

A pixel-wise numerical OPC approach for mask optimization

I Describe forward lithography under nominal process as a function
f(·,Rnom)

Z = f(M; Rnom), Z : printed shape, M : mask.

I Primary objective: minimize printing error in an pixel-wise manner

Lossilt =

N∑
x=1

N∑
y=1

(Z(x, y)− Zt(x, y))2, Zt : desired shape.

Properties

I Numerical: modify mask iteratively by gradient descent.

I Good QoR but extremely computational intensive.
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Learning-based ILT (DNN-ILT)

On-neural-network ILT Correction (DNN-ILT)

I End-to-end solution, purely learning-based approaches.

I Supervised network pre-training + unsupervised mask optimization.

I Domain-specific model, faster convergence, better QoR.
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DNN-ILT, a typical end-to-end on-neural-network ILT correction framework [3].
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Challenges & Motivations

Challenges for learning-based OPC in public research

I Lack of realistic designs in advanced tech nodes.

I Lack of accurate lithography simulation recipe.

I Labelling costs with conventional ILT is drastically expensive.

Our Goals

I Build end-to-end learning-based OPC (ILT) tool

I Handle training data shortage

I Reduce labeling costs

I Modular design for easy upgrade
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Overview of Framework

Problem Abstraction

I Construct a DNN-ILT platform

I Not involve confidential layout in
training

I Deploy on confidential layouts

Two-stages Framework

I Layout generation stage

I DNN-ILT self-training stage
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Overview of Framework - Cont’

Layout Generation Stage

I Fast: learning-based approach

I Realistic: style preserved, DRC
free

I Secure: hard to revert

DNN-ILT Self-training Stage

I Fast labelling with DNN-ILT

I Self-contained, no input label
required

I Domain-specific training
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Overview of the proposed self-training
pipeline, θ∗pt is capable of conducting
DNN-ILT for confidential layouts.
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Layout Generation Stage - Base
Training stage objectives

min DKL(N (µ, σ2)‖N (0, I))︸ ︷︷ ︸
KL Divergence

+ λ‖P−P′‖2F︸ ︷︷ ︸
Self reconstruction

s.t. µ = fµR(l̃,Wµ
R), σ = fσR(l̃,Wσ

R)

l̃ = EG(P,WE),

l = µ+ σ � ε, ε ∼ N (0, I),

P′ = DG(l,WD).

Generation stage objectives

P′ = DG(l +4l,WD),

4li ∼ N (0, c2), i = 1, ...,K,

μ

l!l
σ

𝐸" 𝐷"

ε	∼	N	(0,	I)	

Δl ∼	N	(0,	c2)	

For generation stage

For training stage

𝑷 𝑷′

𝑷′Topology

Decoded Topology

New Topology

Latent

Layout topology generation based on variational convolutional auto-encoder
(VCAE) architecture [6].
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Layout Generation Stage - Cont’

Full view of pattern generation

I VCAE & style detector [6] to preserve original layout style

I Legalization to ensure DRC free

I Nonlinearities in decoder and legalizer, hard to revert original layouts
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General Pipeline for Self-Training

I Generated patterns are spilt into T batches, Zd =
T⋃
i=1

Zd
i

I The ith batch Zd
i → self-training of model θi
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DNN-ILT

Self-train

𝜽1

𝓩1
𝑑 𝓩2

𝑑

𝜽2
···

𝜽𝑇−2

𝓩𝑇−1
𝑑

𝜽𝑇−1

𝓩𝑇
𝑑

𝜽𝑇 Best Pre-trained

DNN-ILT Model

𝜽𝑝𝑡
∗

Model Params Tuning:

Generated New Patterns: 

DNN-ILT

Self-train

DNN-ILT

Self-train

Basic unit of self-training

I Input: old model θt−1

Output: new model θt

I DNN-ILT to label Zd
t → M̃t

I (Zd
t ,M̃t) to pre-train θt
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DNN-ILT Self-train
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DNN-ILT - Cont’

I Label prediction Φ(Zd
t |θt−1) → gradient descent (∇θt−1

Ldnn ilt)

I Optimize printability (ILT) + process variation (PVBand)

Ldnn ilt =α · Lilt + β · Lpvband

=α · ||f(Φ(Zd
t |θt−1) | Rnom)− Zd

t ||22 +

β · ||f(Φ(Zd
t |θt−1) | Rmin)− f(Φ(Zd

t |θt−1) | Rmax)||22,

∇θLdnn ilt =
∂Ldnn ilt

∂θ
=
∂Ldnn ilt

∂M

∂M

∂M̄

∂M̄

∂Φ(Zt; θ)

∂Φ(Zt; θ)

∂θ
, details in [3].

𝒁𝑑 ෩𝑴

Initialization

𝛷(𝒁𝑑|𝜽)

Intermediate ResultDesired Layout

𝛷(⋅ |𝜃)
ILT

Loss

Layer / 

Network

𝐿𝑖𝑙𝑡

∇𝜽𝐿𝑖𝑙𝑡

Converged?

No

Yes

Final Optimized 

Mask

Pre-trained Network

11 / 18



Pre-train Next Network

DNN-ILT → Initial solution sensitive, better θpretrain is indispensable

No prior knowledge to pre-train θ1, let it reconstruct the input itself

Lself reconstruct = ||Φ(Zd
1|θ1)− Zd

1||22.

Special training recipe with domain specific regularization (DSR) term

Lpre train =

supervised term︷ ︸︸ ︷
||Φ(Zd

t |θt)− M̃d
t ||22 +

domain-specific regularization (DSR) term︷ ︸︸ ︷
η||f(Φ(Zd

t |θt) | Rnom)− Zd
t ||22 , t > 1

𝒁𝑡,𝑖
𝑑 𝛷(⋅ |𝜽𝑡)
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What’s New?

Conventional Self-training Ours

Framework Semi-supervised learning Semi-supervised learning
Label Generation Predict pseudo labels Optimize exact labels (DNN-ILT)

Use Pre-label Data? Yes No, self-contained
Learn from Where? Learn from pre-labelled data Learn from scratch via DNN-ILT
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Evaluation Settings

Dataset

I Original/confidential dataset Zu - 4000 instances [5], 2x2µm2,
32nm M1

I Generated dataset Zd - 4 new topologies for each Zu sample

I Test dataset - ICCAD 2013 mask optimization benchmark suite [1]

Baselines

Conventional ILT [2] Neural-ILT [3] Ours

Platform CPU GPU GPU
Training Dataset N/A Original dataset Generated dataset

Labelling Tool N/A Conventional ILT [2] Neural-ILT [3] (DNN-ILT)
Construction Method N/A Supervised learning Self-training
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Performance Comparisons with Baselines

Benchmarks Conventional ILT [2] Neural-ILT [3] Ours

ID Runtime (s) L2 (nm2) PVB (nm2) Runtime (s) L2 (nm2) PVB (nm2) Runtime (s) L2 (nm2) PVB (nm2)

1 1280 49893 65534 13.57 50795 63695 14.92 52583 62753
2 381 50369 48230 14.37 36969 60232 13.98 41471 56559
3 1123 81007 108608 9.72 94447 85358 15.04 82360 111507
4 1271 20044 28285 10.40 17420 32287 21.42 17597 32607
5 1120 44656 58835 10.04 42337 65536 21.48 39405 64828
6 391 57375 48739 11.11 39601 59247 11.50 41535 56210
7 406 37221 43490 9.67 25424 50109 17.26 25884 50956
8 388 19782 22846 11.81 15588 25826 21.60 16562 26016
9 1138 55399 66331 9.68 52304 68650 12.25 53319 67376

10 387 24381 18097 11.46 10153 22443 21.59 12199 21790

Average 788.5 44012.7 50899.5 11.18 38504 53338 17.10 38292 55060
Ratio 1.00 1.00 1.00 0.014 0.875 1.048 0.022 0.870 1.082

Flow TAT∗ N/A > 10 days < 3 days

I ICCAD 2013 benchmarks, comparable printability score (L2 + PVB)

I Comparing to conventional ILT, 50x ILT runtime speedup

I Comparing to Neural-ILT, 3x flow construction cost reduction

∗Flow TAT: total time of flow construction: data labelling + model training
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Performance in Original Dataset

I 20 unseen layouts from
original (assume
confidential) dataset

I θ1 ∼ θ4 trained on
generated dataset

I θbase (Neural-ILT [3])
trained on original dataset

I θ1 → θ4 converge to the
performance of θbase rapidly 1 2 3 4 5 6 7 8 9 1011121314151617181920
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Conclusion
Unified self-training framework to construct end-to-end learning-based
mask optimization tool

Highlights

I Layout generation - massive, fast, realistic, secure

I DNN-ILT labelling - extremely fast labelling overhead

I Self training - self-contained, no pre-labelled data required

Modular Design

I Re-configure litho-simulation recipe

I Upgrade backbone model

I Customize objective functions for mask optimization
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Q&A

Thanks and Questions?
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