

FIT: Fill Insertion considering Timing

Bentian Jiang, Xiaopeng Zhang, Ran Chen, Gengjie Chen, Peishan TuWei Li, Evangeline F. Y. Young and Bei YuCSE Department, The Chinese University of Hong Kong

Timing Aware Dummy Fill Insertion	Global Fill Synthesis and Legalization				
 Dummy fill insertion Reduce dielectric thickness variation; Provide nearly uniform pattern density; Highly-Related to the quality of chemical-mechanical polishing (CMP) process. 	 An efficient heuristic window-based flow for high quality initial solution. Guided by the target density scheduling result. Only performing the GFS flow can already beat the contest winner results. 				
 Timing-aware Dummy Fill Insertion Inserted metal ⇒ Pros: impoves density, increases planarity ⇒ Cons: couples with signal tracks Severely affect the original layout timing closure. Need to reduce the coupling impact during the metal fill insertion. 	 Increase the spacing and reduce the parallel overlap lengths between any two metal conductors. Forbid any area overlap between fill and the given critical wire. Order-Sensitive process, obtain a better insertion order: Sort the windows order by the density gap D_{max} - D_t. Sort the fillable rectangles by weighted score of their shape, area, distance and parallel overlap to/with surrounding critical wires. 				
Capacitance Evaluation	$\alpha \cdot \boldsymbol{h} + \beta \cdot \boldsymbol{A} + \gamma \cdot \sqrt{\boldsymbol{d}_{e}} + \eta \cdot \frac{1}{\boldsymbol{I}}.$ (2)				
• Area Capacitance: Two conductor are on different metal layers, and their projections overlap $\Rightarrow C^a = P_{l_1, l_2}(s) \times s$.	Legalization				
 Lateral Capacitance: Two conductor are on same layer and have horizontal overlap ⇒ C^I = P_I(d) × I. Fringe Capacitance: Two conductor pieces are on different layers, and have parallel edge overlap 	 A design rules checker (RTree) is maintained to perform legalization and record density Naive implementation: Insert all wires and fills into checker ⇒ Time consuming Pruning: Global checker + local checkers. 				

$\Rightarrow C^f = P_{l_1,l_2}(d) \times l + P_{l_2,l_1}(d) \times l.$

Problem Formulation

Given a design layout, insert metal fills to minimize:

- Equivalent capacitance *: The equivalent capacitance of the given critical nets.
- Overall runtime.

The insertion result must satisfy the hard constraints on:

- Density criteria: A running window of size w × w and a step size of ^w/₂ is considered on each layer, the density inside the window can not violate the give density lower and upper bound.
- **Design rules**: Minimum spacing, minimum fill width, and maximum fill width.

Additionally, the **total parasitic capacitance of all the signal nets** is also considered, since it will affect performance like power consumption, timing.

* Equivalent capacitance to the ground, can be obtained by network analysis method.

Overview of FIT Flow

• Efficient: Strong runtime performance on ICCAD 2018 benchmarks.

- Local checker responsible for insertion and legalization of a specific window, discard when finished.
- **Global checker** keeps wire locations for the entire layer (or one partitioned region of the layer), success insertion of a window only commits those fills that close to window border to global checker.

Detailed Post Refinement

Timing-aware Fill Relocation:

• Relocate those fills (obtained from GFS) with high-impact on timing:

nin
$$\sum_{i} \gamma_i A_i$$

(3)

(4)

- s.t. Density and max fillable area constraints
- Weight γ_i = ∑_k l_{ik}/d_{ik}/d_{ik} estimates the timing-impact of the fill insertion in *i*th fillable rectangle ⇒ minmize high-impact fills.
 d_{ik} and l_{ik} measure the distance and parallel overlap between the fill and the surrounding critical wire.
 Can be solved efficiently by greedy method
- Can be solved efficiently by greedy method.

Timing-aware Fill Shifting:

mir

s.t.

- To capture the lateral and fringe capacitance with respect to critical wires.
- d(f, c), l_{fc} → distance and overlap between fill and surrounding critical wire. Rest formulas are the boundary and fix order constraints.
- Alternatively optimize for X-dimension and Y-dimension.

$$D = \sum_{f \in F} \sum_{c \in C} \frac{l_{fc}}{d^2(f, c)}, \\ d(f, c) = |x_f - x_c| - \frac{1}{2}w_f - \frac{1}{2}w_c, \\ L + \frac{1}{2}w_f \le x_f \le R - \frac{1}{2}w_f, \quad \Rightarrow \quad \frac{\partial D}{\partial x_f} = \begin{cases} \sum_{c \in C} \frac{-2 \cdot l_{fc}}{(x_f - x_c - \frac{1}{2}w_f - \frac{1}{2}w_c)^3}, & \text{if } x_f \ge x_c, \\ \sum_{c \in C} \frac{-2 \cdot l_{fc}}{(x_f - x_c + \frac{1}{2}w_f + \frac{1}{2}w_c)^3}, & \text{if } x_f < x_c, \end{cases}$$

- **Effective**: Outperforms the contest winner by all metrics.
- **Extendable**: Separate modules, easy to further integrate other optimization flow.

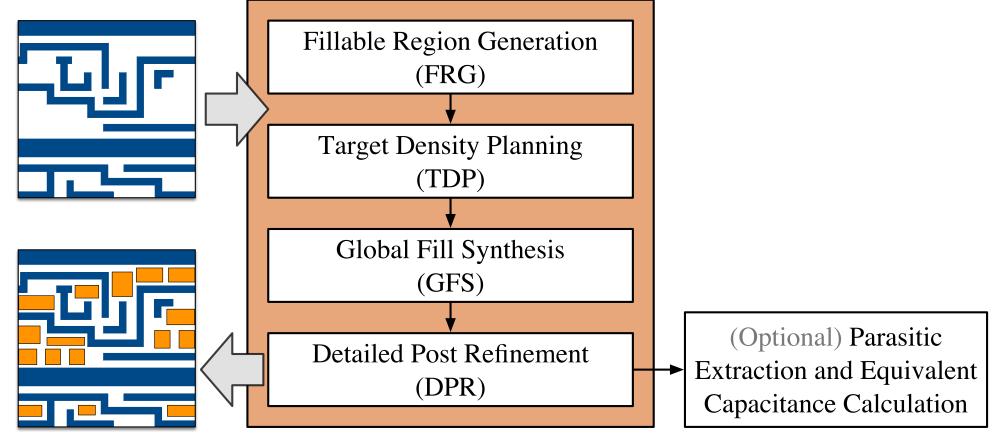
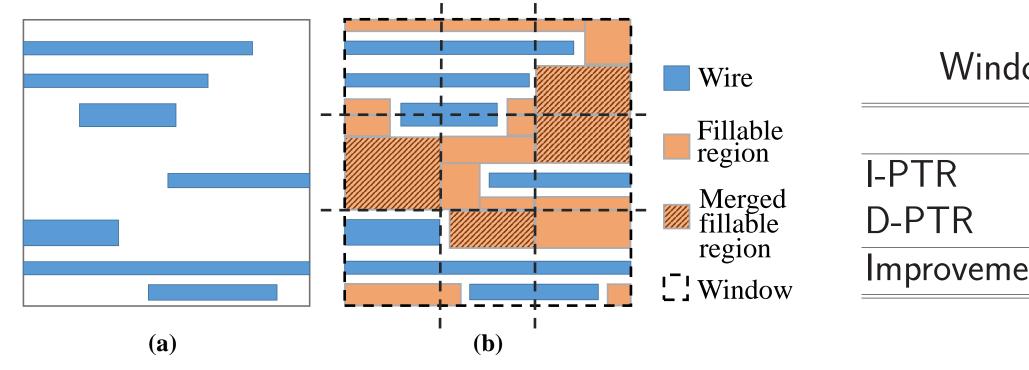
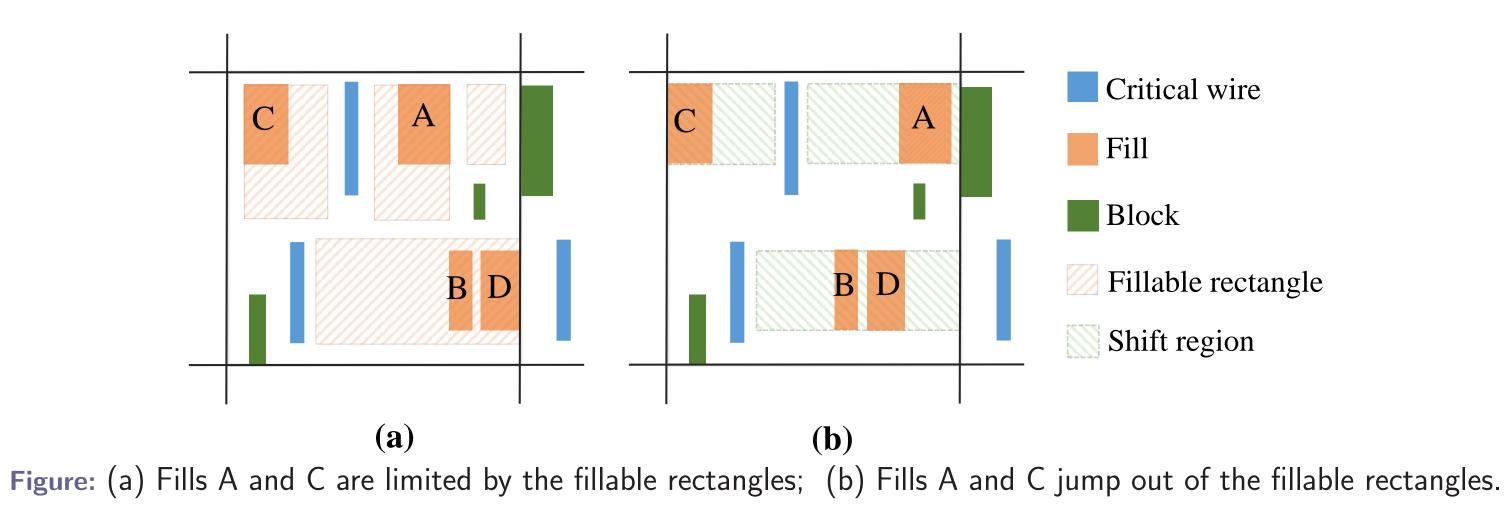



Figure: Overall dummy fill insertion flow.

Fillable Region Generation


- Extract fillable **polygons** of the entire layer.
- Polygon decomposition: polyons with thousands of vertices and maybe holes inside are difficult to handle \Rightarrow decompse them to rectangles, assign rectangles into different windows $(\frac{w}{2} \times \frac{w}{2})$.
- The aspect ratio of rectangle fits the layer preferred direction. Use sweep line to merge rectangles locally.
- Comparing to [Liu+, TODAES'16], significantly expand the solution spaces for later procedures.

Windows average density upper bound Case 1 Case 2 Case 3 Case 4 Case 5 $\begin{aligned} |x_{f} - x_{f'}| &\geq \frac{1}{2}w_{f} + \frac{1}{2}w_{f'} + S_{min}, \\ |x_{f} - x_{b}| &\geq \frac{1}{2}w_{f} + \frac{1}{2}w_{b} + S_{min}, \\ \forall f, f' \in F, \text{ and } f \neq f', c \in C, b \in B. \end{aligned}$

 $x_f^{(t+1)} \leftarrow x_f^{(t)} - \alpha \frac{\partial D}{\partial x_f^{(t)}}, \quad f \in F,$

• The shifting refinement is regardless of original fillable region limitation.

Experimental Results

- On ICCAD 2018 Contest Benchmarks
- Capacitance evaluation tool is released by the contest organizers

case	# wires	# critical		1st p	1st place team		FIT			
		wires	RT-s (<i>s</i>)	RT-m (s)	$C_{critical} (pF)$	$\overline{\mathrm{C}_{\mathrm{total}}\left(\boldsymbol{pF}\right)}$	RT-s (<i>s</i>)	RT-m (s)	C _{critical} (<i>pF</i>)	C _{total} (<i>pF</i>)
case1	305667	12897	19.10	19.10	33.11	11313.69	8.80	5.16	30.94	10883.66
case2	750166	33325	61.83	61.83	79.41	39612.26	31.44	18.41	73.53	39523.68
case3	64903	5307	3.51	3.51	13.01	1669.72	1.59	1.09	11.80	1558.17
case4	149464	11896	7.52	7.52	25.46	3136.48	3.55	2.43	23.25	2969.20
case5	275425	22813	15.14	15.14	50.89	6150.53	6.97	4.62	45.97	5705.39
Total	_	-	107.10	107.10	201.88	61882.68	52.34	31.71	185.48	60640.10
Ratio	_	-	1.000	1.000	1.000	1.000	0.489	0.296	0.919	0.980

I-PTR	0.7196	0.7339	0./196	0.6990	0.6940
D-PTR	0.7866	0.8009	0.7725	0.7632	0.7642
Improvement	9.30%	9.13%	7.34%	9.18%	10.13%

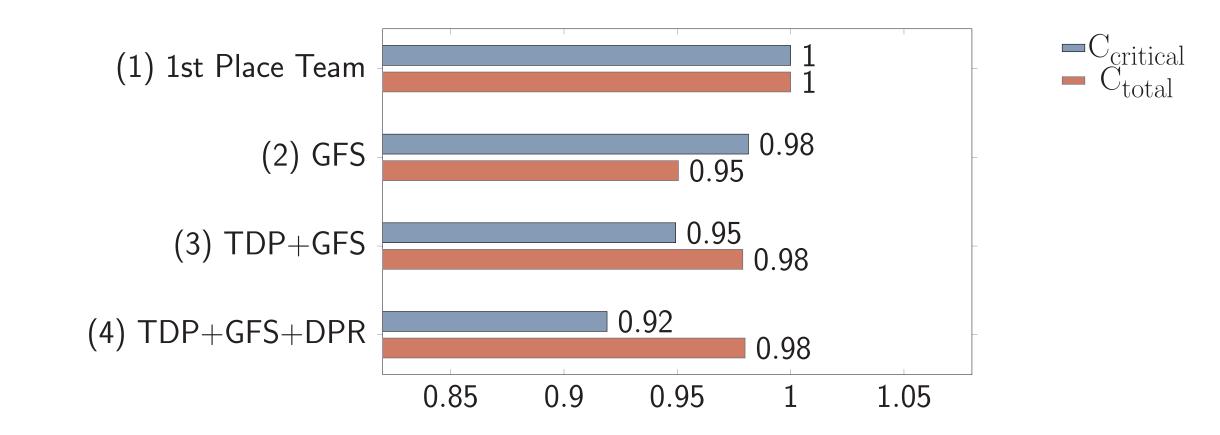
Figure: Fillable region generation

Target Density Planning

s.t. Density constraints

Weight $\Omega_{i,j}$ measures \Rightarrow the criticality of window W_{ij} (the ratio of critical wires enclosed in),

$$\Omega_{i,j} = \begin{cases} \epsilon, & \text{if } a_{ij}^c = 0, \ a_{ij}^{nc} = 0, \\ \omega^c \cdot a_{ij}^c + \omega^{nc} \cdot a_{ij}^{nc}, \ \text{else.} \end{cases}$$


Need to introduce auxiliary variable and constraint to linearize formula (1).

(1)

* RT-s denotes overall runtime in single thread mode, RT-m denotes overall runtime in 8-threads.

• FIT framework outperforms the contest winner in all metrics.

• 8% reduction on critical nets capacitance, 2% reduction on total capacitance of all nets. $2 \times$ runtime speedup in single-thread execution, and $3.37 \times$ in multi-thread execution.

• Global fill synthesis stage is very effective, already beats the contest winner.

• Target density planning and detailed post refinement stages can significantly further reduce critical capacitance.

Bentian Jiang, Xiaopeng Zhang, Ran Chen, Gengjie Chen, Peishan Tu, Wei Li, Evangeline F. Y. Young and Bei Yu

Email: {btjiang,xpzhang,rchen,gjchen,pstu,wli,fyyoung,byu}@cse.cuhk.edu.hk