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Optical Proximity Correction

Conventional OPC approaches include
I Inverse lithography-based OPC (ILT)∗

I Pixel-based optimization, larger solution space, expected to achieve better mask
printability.

I Relatively slow, mask manufacturability, etc.

I Forward model-based OPC (FM) †

I Relatively fast, good performance in practice.
I Limited solution space, may not converge to optimal for advanced tech nodes.

(a) Target (b) ILT (c) (d) (e) FM (f) (g)

∗[1] MOSAIC, DAC2014, Gao
†[2] Robust-OPC, DATE2015, Kuang
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Key Challenges of Optical Proximity Correction

I Both model-based and ILT OPC involves multiple rounds of litho-simulation.
I Conventional lithography simulation for new feature size suffers from large

computational overhead, which makes the OPC process extremely time
consuming.

I General flow of typical model-based OPC tool. ‡

I The 3rd stage is performed incrementally under the guidance of litho-simulation
result, which takes up around 80% runtime of the entire process.
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Motivation

I The large computational overhead of conventional lithography simulation
dominates the runtime of conventional OPC process

I Previous learning-based OPC works usually have low scalability for new
technology node due to the large time-overhead in training step.

I E.g. GAN-OPC §

I Customized GAN architecture designed for OPC, reasonably good performance.
I Time consuming, around 28000 Secs for training, and 400 Secs to perform OPC on

a 2x2 um2 clip.

§[3] GAN-OPC, DAC2018, Yang
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Our Approach

Feature Extraction and Feature Selection

I Matrix-based Concentric Circle Sampling with CUDA Acceleration

I Second Order Circle Subset Selection via Mutual Information

Learning Models

I Machine Learning-based Mask Printability Predictor

Application

I Machine Learning-based OPC Acceleration
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Matrix-based Concentric Circle Sampling

I We perform matrix based concentric circle sampling (MCCS) for feature
extraction ¶

I l denotes the length of the sample clip, np denotes the number of sample points
on each sample circle.

I Rin, inc1 and inc2 control the sampling density manually.

(a) (b)

¶[4] Bilinear-HSD, ISPD2017, Zhang
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CUDA Acceleration of MCCS

I Conventional implementation of MCCS suffers from long runtime. The runtime
issue affect the performance of the proposed acceleration framework.

I Implement the MCCS with CUDA (c/c++) to achieve real-time feature
extraction, and achieve 91.99% runtime reduction comparing to conventional
CPU-based MCCS (3.652s to 0.2925s).
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Second Order Circle Subset Selection via Mutual Information

Primal objective: select n∗c circles from original circle set that can maximize the
dependency of selected circle subset with the target variable y (equivalent to minimize
the conditional entropy)

In∗c = arg max
In∗c⊆I

∑
i∈In∗c

∑
j∈In∗c

I(Ci, Cj ;Y ),
(1)

where the mutual information I(Ci, Cj ;Y ) defines the dependency between ith and jth

circles with classification variable y

I(Ci, Cj ;Y ) =
∑
ci∈Ci

∑
cj∈Cj

∑
y∈Y

p(ci, cj , y) log
p(ci, cj , y)

p(ci, cj) p(y)
. (2)

For each pair of circle ci and circle cj , encode them into decimal number, and perform
statistic on the entire dataset (corresponding ci, cj). Finally, construct the mutual
information matrix M, where the entry in ith row and jth coloum is I(Ci, Cj ;Y ).
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Second Order Circle Subset Selection via Mutual Information

Rewrite Eqn.(1) as a mixed-integer quadratic programming (MIQP) problem

max w>Mw,

s.t.

nc∑
i=1

wi = n∗c , wi ∈ {0, 1}, ∀i.
(3)

The feature selection method reduces 9.4% false alarms and improves 2.38% accuracy
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ML-based Mask Printability Predictor

I The proposed ML-based mask printability predictor consists of
I A EPE ‖ (edge placement error violation) prediction model (classification)
I A light intensity prediction model (regression)
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‖EPE is the horizontal and vertical geometric displacement of the image contour from the
corresponding edge of the target layout polygon
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ML-based Mask Printability Predictor

For each checkpoint on layout polygon

I EPE prediction model ⇒ whether this checkpoint is a EPE violation, the label is
encoded as

LabelEPE(x, y) =

{
1, if displacement > Threshold,

−1, if displacement ≤ Threshold.
(4)

I Intensity prediction model ⇒ the adjust direction and step-size for this checkpoint
segment, and intensity label is from the ground-truth resist image (continuous).

I Apply XGBoost to train both EPE model (classification) and light intensity
prediction model (regression), and conduct cross-validation during the training.
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Flow Overview

The target is to leverage machine learning technique to break the runtime bottleneck
for conventional OPC.

I We regard the conventional mask quality evaluation step as a black-box, and
replace it by our ML-based mask printability predictor.
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Application on OPC Acceleration

I The outputs of our learning models can determine the behavior of 3rd stage in the
model-based OPC (where to optimize and how to optimize).

I We embed our CUDA-based MCCS extractor and pre-trained EPE/intensity
prediction models into the 3rd stage, to skip the lithography simulation process.
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Application on OPC Acceleration

I Fast mask printability evaluation scheme reduces 65.8% runtime comparing to
conventional litho-simulation

I Due to the cross-platform implementation, extra I/O time (63.9% of total time)
is introduced for communication.
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Experimental Results

I On ICCAD 2013 Contest Benchmarks

I 2048nm x 2048nm layout clips of 32nm M1 layer

EPE prediction model Intensity prediction model PGAN-OPC∗∗

CPU (s) FA# Acccuracy CPU (s) RMSE CPU (s)
Regular feature 225 360 91.45% 122 0.003963 28000
Selected feature 1533 329 93.83% - - -

Ratio 0.146 1.094 0.975 - - -

* number of test instances = 4309, mean value of intensity labels = 0.22436.

I Our second order circle subset selection method improves the prediction accuracy
for model by 2.38% and reduces 9.4% false alarms.

I Our training times are only 5.48% and 0.44% of PGAN-OPCs.

∗∗[3] GAN-OPC, DAC2018, Yang
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Experimental Results

Benchmarks Ours Original mask optimizer ILT GAN-OPC PGAN-OPC
ID Area (nm2) RT (s) L2 (nm) RT (s) L2 (nm) RT (s) L2 (nm) RT (s) L2 (nm) RT (s) L2 (nm)

case1 215344 69.14 44721 278 53816 1280 49893 380 54970 358 52570
case2 169280 69.09 37418 142 41382 381 50369 374 46445 368 42253
case3 213504 80.86 80491 152 79255 1123 81007 379 88899 368 83663
case4 82560 67.61 19038 307 21717 1271 20044 376 18290 377 19965
case5 281958 71.69 47423 189 48858 1120 44656 378 42835 369 44733
case6 286234 76.53 44762 353 46320 391 57375 367 44313 364 46062
case7 229149 70.18 30400 219 31898 406 37221 377 24481 377 26438
case8 128544 68.87 18200 99 23312 388 19782 394 17399 383 17690
case9 317581 73.38 55767 119 55684 1138 55399 427 53637 383 56125

case10 102400 68.74 14451 61 19722 387 24381 395 9677 366 9990

Average - 71.61 39267.1 191.9 42196.4 788.5 44012.7 383.6 40094.6 371.9 39948.9
Ratio - 1.00 1.00 2.68 1.0746 11.011 1.1209 5.356 1.0211 5.193 1.0174

* L2 error is ||M−R||22, where M is the target mask image and R is the wafer image. RT denotes runtime (sec).

I Compared with current mainstream works, we achieve
I 1.75% - 12.1% better image-fidelity in terms of L2 (nm);
I 2.6× - 11× runtime speed-up.
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Conclusion

I Propose a set of fast and accurate mask printability prediction models based on
machine learning techniques.

I Develop with CUDA a matrix-based concentric circle sampling method for feature
extraction, followed by a second order circle subset selection algorithm for feature
selection.

I Develop a machine learning-based OPC acceleration framework, which achieves
2.6X-11X runtime speedup with a comparable printability.
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Q&A

Thanks and Questions?
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